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sequences 
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Troitsk Institute of Innovation and Thermonuclear Investigations-TRINITI, 142092, Troitsk, 
Moscow Region. Russia 

Received 11 October 1993 

Abstract The spectral representation gives an effeclive approach to the analysis of statistid 
characteristics of symbolic sequences. We derive the corresponding criteria for the random 
case. The criteria ensure the dichotomic clsssificalion (random-non-random) for relatively short 
sequences of about several thousand symbols. The theory is applied to inflation models, symbolic 
dynamics and DNA sequences. 

1. Introduction 

Sequences of symbols are the usual tool of communications and appear in various physical 
and non-physical problems. The physical applicationst are related to quasicrystals and 
inflation models [I-31, as well as symbolic dynamics [ G I .  The analysis of DNA sequences 
amacts interest both from physicists and specialists in genetics 17-1 11, while the symbolic 
sequences in natural languages and in the transmission of signals are the objects of 
investigation in linguistics and information theory. Very often apriori information on the 
underlying algorithms is absent. In this case the first step consists of the simple dicohotomic 
classification: is a sequence random or non-random? If a sequence contains both regular 
and chaotic contributions, the second step consists of the separation of different parts. 

In [12,13] the relevant criteria have been discussed from the information theoretic 
viewpoint [14]. Here we consider an alternative approach based on the spectral 
representation of a symbolic sequence. The method is a slight modification of the technique 
used in the theory of quasicrystals and substitutional sequences [Z, 31. The layout of our 
paper is as follows. The general formulation of the problem is presented in section 2. 
The expressions for the characteristic and probability distribution functions for spectral 
harmonics are derived in section 3, while the particular criteria of disorder are given in 
section 4. These results are applied to the analysis of inflation models, symbolic dynamics 
and DNA sequences in section 5. The final section contains some concluding remarks. 

t The literature devoted to the problems mentioned below is very vast. For this reason we will mention only 
monographs, reviews and papers with elements of review. where further detailed references can be found, 
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2. Spectral representation of sequences 

2. I .  Structure factor of sequence 

The general idea of our approach consists of the Fourier representation of a symbolic 
sequence and derivation of the statistical criteria for the distributions of the spectral 
harmonics. In this and the following sections we present the main results of the general 

Let us consider an abstract sequence of length M and I different symbols {AI} .  A 
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theory. 

sequence can equivalently be described in terms of the position function: 

1 if the ath symbol occupies a position m I 0 otherwise (2.1) 
Pm,= 

a E ( A I . .  . . , A I )  m = 1,.  . . , M .  

Then, the Fourier harmonics corresponding to a subsequence of the ath symbols are 
determined according to 

pa&) = M - ' / ' z  exp(-iq.n) 

The reciprocal transformation is given by 

M 
q. = 2 n n / M  n = 0,1,. . . , M - 1. (2.2) 

m=1 

M-I 

pm,@ = M-'/' pa(qn) exp(iq.m) m = I , .  . . , M .  (2.3) 
lt=O 

The zeroth Fourier harmonic does not contain any positional information and is related only 
to the total number of the orth symbols, Nu: 

pdo) = N , J M I / ~ .  (2.4) 

P.&d = P&IT - 4") (2.5) 

The reality of pm,. leads to the condition 

(the asterisk denotes complex conjugation). 
The pair correlations (see below) are characterized by the smcture factors: 

and, in particular, a diagonal structure factor Fa&,) is a symmetric function of q. with 
the centre of symmetry at qn = IT. 

The pair correlations can also be described in terms of the circular correlation functions: 
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where 1 < no < M - 1.  Both characteristics are mutually connected through the analogue 
of the Wiener-Khinchin relationship 1151: 

(2.10) 

It follows from definitions (2.8) and (2.9) that 

K&(mo) = K&(M - mo). (2.11) 

The higher products of Fourier harmonics are related to the higher correlation functions. 

2.2. Sum rules 

The statistical criteria are expressed through a set of universal (independent of a particular 
distribution of symbols) mean spectral parameters determined by the exact sum rules. The 
first relationship can be derived directly from equations (2.1)-(2,7), and is given by 

M - l  M 

Fap(qn) = Pm.uPm.p = & p N .  (2.12) 
n a  *=I 

where 6,p is the Kronecker symbol. Taking into account equation (2.4) for the zeroth 
harmonics, one obtains 

M-1 

( M  - I)-’ = (6.pN, - N , N p / M ) / ( M  - 1). (2.13) 

Analogously, one derives the more general sum rule 

M 

Pa, (q., ) , . . Pa, k”,) = M‘r-2’’2 pm.ul . . . Pm.,% 
O C q . < k ( M - I ) / M  m=l 

(q., +.-+qo,)mdk=O 

= sa,,, I . .  8 ala, M(‘-Z)/zN 011 ’ (2.14) 

Equation (2.10) relates the mutual deviations of circular correlation functions and 
structure factor harmonics with n # 0 from their respective mean values: 

mo=I “=I 

(2.15) 

where 

f?$(mo) = (M - I)-’ 

Similar expressions can be derived for the higher correlation functions as well. 

M-I 

K:p(mo) = (N,Np - G,pN,)/M(M - 1). (2.16) 
mo=I 
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2.3. Excluded volume effects 

One position is occupied by only one symbol and there are no voids in a sequence. This 
condition imposes the additional restrictions on the two-valued position functions (2.1) 
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(2.17) 

i.e. the positions of subsequences for any (I - 1) different symbols determine unambiguously 
that of the remaining subsequence. In terms of Fourier harmonics the same restriction is 
formulated by 

(2.18) 

Condition (2.17) leads to the specific correlations (called traditionally 'excluded volume 
effects') even for the random sequences. 

3. Statistical characteristics of random sequences 

3.1. Characteristic function 

The statistical properties of Fourier harmonics can be determined by the averaging of the 
characteristic (or generating) function [15,16]: 

It is convenient to impose on the auxiliary variables u,(q,) the same condition as in  
equation (2.5), i.e. 

u6(qJ = u d 2 n  - 4.). (3.2) 

Using definitions (2.1) and (2.2). 2 is rewritten in the form 

where 

(3.3) 

(3.4) 

Thus, the problem is reduced to the averaging of various products of position functions 
Pm.u. 
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The averaging should be performed over the ensemble of random realizations with the 
same symbol content, and is determined by the simple combinatorics 

C t  ,,,,,", = m ! / n l ! .  . .nI! 

nl + ... +n,  = m  O! = 1. 
(3.6) 

Here the angular brackets denote averaging over the ensemble, LI is the number of position 
functions corresponding to the symbols Ak, and Nk is the total number of symbols Ak in 
a sequence with total length M. All position subscripts on the LHS of equation (3.5) must 
be different. The RHS of equation (3.5) is equal to the ratio of two combinatorial factors: 

is the total 
number of realizations with respective LI , . . . , L, positions for different symbols held fixed 
(these are just the positions filled by symbols corresponding to the LHS of equation (3.5)). 
After collection of various random products and symmetrization over identical symbols, the 
final expression for the averaged characteristic function ( Z )  takes the form 

M - L I  L I  
C f , , N ,  is the total number of different randomrealizations, while CN,-L, ,.... Nt-Lt  

The prime on the sum over different positions means that all terms with at least two (or 
more) coincident position subscripts should be discarded. 

The consideration shows that in the limit N ,  >> 1, M >> 1 the asymptotic (up to - I /Ne,  1/M) cumulant expansion for In(Z) is given by 

ln(Z) = C C i " + " ' + r l / r l ! . . . r l ! ( ( ~ A , ( q n l ) . . . ~ A I ( q  ",,) 
Id IP",l , , 

).I 

. . . p A ~ ( q n  ,,+..+,,-,+ i ) . . . P A I ( q n  ,,+...+,,)))UAl(q",) . . .  . .  

rl 

. .uAi ( q n , , ) .  .UA,(qn,,+,,,+,.,+i). .,U&(qn,,+,.+,,). (3.8) 

Here the summations are restricted by the inequalities 0 < rk << M, r l  + . . . + rl << M, 
2 r / M  < q., < %(M - l ) / M .  Besides that, in each cumulant ((PA, ( q " , ) .  I .p*,(qn,)+ ..,*, ))) 
a partial sum for any subset of wavenumbers except the sum over all wavenumbers cannot 
be equal to %p (where p is an integer), i.e. 

(3.90) 

(qnl + . ' t qn,t+,,,+rd) mod 2r  = 0. (3.9b) 

The expressions for cumulants can be derived explicitly either directly from equation (3.7) 
or (this way is much simpler) by the recurrent extraction of the corresponding contributions 
from the sum rule (2.14). 
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3.2. ProbabiliQ distribution functions 
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Below we restrict ourselves mainly to the statistical properties of harmonics (and their 
complex conjugates) with coincident wavenumbers 4", which are in the leading terms with 
respect to M - 1 / 2  determined by the characteristic function 

(3.10) 

The same statistics can be described in terms of the probability distribution function for 
arbitrarily chosen ( I  - 1) symbols (since the remaining harmonic is expressed through 
equation (2.18)). It is obtained by reciprocating the characteristic function (3.10) for any 
(1 - 1) variables (and equalizing the remaining one to zero), 

(3.11) 

where 

F!i') is an ( I  - 1) x (1 - 1) submatrix of (see equation (2.13)) for the chosen ( I  - 1) 
symbols, det ~ ~ ~ $ i ) ~ ~  is its determinant, the complex Fourier harmonics pa are described 
in terms of modulus IpaI and phase qa, 

with integrations over 0 < [pal < 00, 0 < (0, < 2n. 
The distribution functions for the lower subsets of symbols can be obtained from & I  

by integrations over the remaining variables. In particular, the one-symbol distribution 
function is given by 

PI(&,) = e x p ( - & d k d / k a  (3.16) 

and coincides with the well known Rayleigh distribution 1151. 
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4. Criteria of disorder in non-periodic sequences 

4.1. Distribution of amplitudes of harmonics 

The results of the previous section present some particular criteria of disorder that are useful 
in applications. The first test concerns the amplitudes of harmonics. 

Due to the symmetry property (2.7) only half of the (M - 1) shvcture factor harmonics 
F,,(q,) is statistically independent. Consider for definiteness the left half of the spectrum 
with 0 < q,, 4 x .  As is seen from equation (3.16), the probability of finding a given 
harmonic with an amplitude exceeding a fixed value FA:) is equal to 

Prob{F,, > F,"] = dFL, Pl(F&) =exp(-FA:)/p.,). (4.1) Sm F E  

This means by definition that the average number of harmonics with heights exceeding FA:) 
is given by 

(n,) = (M/2)exp(-FA:)/&,,). (4.2) 

The condition (n,) = 1 determines the characteristic maximum value: 

Fa,,- = Feu MM/2). (4.3) 

Since the probability that all the MI2 harmonics would have heights less than FJ:) is equal 
to [ l  - exp(-F$)/paa)lM/*, the probability that at least one from the M/2 harmonics 
exceeds FA:) is defined as 

Prob{F,, > F::); M/21 = 1 - [ I  - e ~ p ( - F ~ : ) / ~ ~ . ) l ~ / *  - 1 - exp[-exp(-(FL:) - F ~ ~ . - ) / F ~ ~ ) ] .  (4.4) 

Analogously, the probability that at least one from the M/2 harmonics has an amplitude 
less than FA:) is determined as 

Prob(F,, c I$:); M/2] = 1 -exp(-FA:)/Faa,dn) (4 .5~)  

Faa,min = paa/(M/2). (4.5b) 

The values Farr,,,,= and Fuu.,,,,o characterize the influence of mesoscopic fluctuations related 
to the particular random realizations. 

4.2. Smoothed spectra 

In many cases the order and disorder coexist with each other. It is very important to extract 
the underlying long-range correlations (if they exist). For example, l/q,Y-like fluctuations 
in Fa&,) determine the (anti)persistent variations in the coarse-grained local density of 
the ath symbols depending on the sign of v (i.e. the retaining or reversing in the tendency 
of variations during motion along a sequence from the beginning to the end) [17]. There 
are several methods for obtaining a solution to this problem [18]. The simplest consists of 
the partial smoothing of spectra in order to display the underlying bends. The smoothing 
means movable averaging over s left and right neighbours, 
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Ifs << M ,  then the correlations between harmonics with different q,, may be neglected and 
the approximate probability distribution function for the amplitudes of R a ( q . )  is given by 
the Nakagami distribution 1191: 

V R Chechetkin and A Yu Turygin 

. , , s(F=,(q"+,))dF..(q"-,). . .dFa.z(qn+s) 

= [ ( 2 ~  + i ) / F a a ~ b + 1 F ~ / r ( 2 ~  + 1)exp[-(2s + 1)Fua/FU0~ (4.7) 

where PI (Fue(qn)) is defined by equation (3.16) and r(2s + 1) is a gamma function. The 
mean values of the height and standard deviation corresponding to the Nakagami distribution 
(4.7) are equal respectively to 

(4.) = Fau u2(Fua) = F2J(2S + 1). (4.8) 

In the limit M >> s >> 1 the distribution (4.7) tends to the Gaussian function, with the mean 
value and standard deviation determined by equation (4.8). 

4.3. Mutual correlations 

The excluded volume effects lead to the specific correlations even for the random sequences. 
The mutual correlations are characterized by the cross-correlation coefficients [15.16]: 

(4.10) 

(see equations (2.6) and (2.13) for clarification of the nomenclature). The same characteris- 
tics can be calculated by the circular pair correlation functions (see equations (2.8)-(2.10), 
(2.15) and (2.16)): 

(4.1 1) 

(4.12) 

Since the zeroth harmonics or correlation functions for mo = 0 do not contain any positional 
information, they are always discarded in the corresponding spectral sums. 

Assuming the equivalence of the averaging over spectra to that over the ensemble of 
random realizations, and using equation (3.10) (or equation (3.11)). one obtains 

u2(Fmp) = FemFpp (4.13) 

k(F,BIFyd = ~ ~ y ~ ~ p / ( F ~ ~ ~ o D ~ y ~ F ~ ~ ) l / 2  (4.14) 

in particular. for a # p ,  

k(FmIFpp) E kmp = NaNp/(M - Nm)(M - No).  (4.15) 
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Equation (4.15) has a simple probabilistic meaning. The cross-correlation coefficient %, is 
equal to the probability of simultaneously finding the olth symbols in positions free from 
the pth symbols and vice versa. The standard deviation u(F,,) = Fe, coincides with its 
counterpart for the spectrum of white noise [18]. 

At the end of this subsection we give an estimate for the cross-correlations between two 
uncorrelated random sequences (1 and 2) with the same lengths M: 

As can easily be shown, after the independent averagings over two sequences the 
corresponding moments are approximately equal to 

Thus, the mesoscopic random cross-correlations do not exceed an order of magnitude - The relative mesoscopic fluctuations in equations (4.13H4.15) axe of the same 
order, 

4.4. Structural entropy of sequence 

Let a function f(n) have monotonous first and smooth second derivatives. Then, an equation 
f ’ (x )  = const has a unique solution for any given value of the constant. Consider, now, a 
spectral sum, 

under the additional restriction 

(4.17) 

(4.18) 

(corresponding to the sum rule (2.13)). Using the standard technique of Lagrange 
multipliers. it is easy to see that the conditional extremum of S, is attained for the strictly 
uniform distribution of structure factor harmonics over the spectrum: 

F,,(qd = 4,. (4.19) 

Since the heights of Fourier harmonics for the random sequences are distributed over 
wavenumbers qn more uniformly than for an ordered state (cf., for example, the crystal 
and quasicrystal spectra with sets of sharp Bragg peaks), a sum S, may serve as a structural 
entropy. The quantitative criterion for the random sequences can be obtained by averaging 
S, with the probability distribution function (3.16): 

(4.20) 

(4.21) 



(4.22~1) 
(4.226) 
( 4 . 2 2 ~ )  

( 4 . 2 3 ~ )  
(4.236) 
( 4 . 2 3 ~ )  

where pea = N , ( M - N , ) / M ( M -  I), C = 0.577215.. . is the Euler constant, and r(r+l) 
is a gamma function. Function ( 4 . 2 2 )  corresponds to the standard spectral definition of 
information entropy [I81 (the various definitions are equivalent only for quasiGaussian 
statistics). The particular calculations show, however, two serious drawbacks in this case. 
First, the weak logarithmic dependence is not sensitive enough and, secondly, S, tends 
to infinity for any hidden periodicity (this choice does not discern, for example, between 
a doubled random sequence and a two-periodic sequence). In practical applications the 
choice of the function f(F,,) in equation (4.17) is restricted by the requirement that the 
mesoscopic fluctuations related to the particular random realizations are small. 

Functions (4.22a) and (4.22b) correspond to the conditional maximum, while function 
( 4 . 2 2 ~ )  gives the conditional maximum for 0 c r < 1 and the minimum for r > 1. 

The more universal criteria can be obtained by using the relative variables Fae(qn)/Fea 
or the local spectral probabilities introduced in [3], 

p'?(q*) = Fau(q")/(M- 1)FmY. (4.7-4) 

Generally, the multidimensional fractal formalism [20] should be applied to the many- 
symbolic sequences with scaling invariance: 

(4.25) 

As is seen from equations (4.5) and (4.23c), the random mesoscopic fluctuations dominate in 
the range of exponents r c -1. In the range of positive values r 5 0 the finite-size effects 
related to the singular outbursts (4.3) start to become important since r 2 In M/ lnln M, 
and special measures should be taken to avoid the artefact multifractality [ 3 ] .  

5. Particular applications 

5. I .  Substitutional sequences 

In this section, several applications of the spectral criteria will be illustrated. In order to 
demonstrate the sensitivity of various criteria, one of the sequences is chosen to be nearly 
random, while the other is distinctly non-random but has a relatively broad spectrum. We 
begin with the substitutional sequences. Their growth is determined by consecutive iterations 
according to the inflation rule: 

AI + U I ( A I , .  . . .AI) ,  . . . , A I  -+ s ( A 1 . .  , . ,AI)  (5.1) 
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where q ( A t ,  . . . , A,) is some combination of the symbols AI,  . . . , AI. The corresponding 
inflation rules may be both deterministic (as in equation (5.1)) and probabilistic (e.g. see 
1211). 

Figure 1 shows typical results for the four-symbol RudinShapiro substitution 

A - t A C  B + D C  C - t A B  D + DB. (5.2) 

The Rudin-Shapiro inflation is known to be strongly randomizing [2,3]. For definiteness 
we consider the iterational growth from the symmetric seed ABCD. As can be checked, 
during subsequent iterations, A and D occupy invariably only the odd positions, while B 
and C are placed in even sites. This gives sharp coherent Bragg peaks at qn = n, 

PA(O) = ~ ~ ( 0 1  = pc(0) = M O )  =   PA(^) = PB(R) = PC@) = -/&(E) = N / M ” *  
(5.3) 

N 2P M = 2Pt2 P > l  (5.4) 

where p is the number of iterations. For this reason such a sequence can be represented either 
by the intersite merging of two quasi-random binary sequences or by the partial destruction 
of exact two-periodicity. The coherent harmonics at q,, = n should be subtracted from the 
corresponding criteria for the random sequences, e.g. (see equations (2.7). (2.12) and (5.3)) 

(5.5) 

and analogously for equations (4.9) and (4.10). 
The positions of A and D (or B and C) are completely correlated, km = ksc = I 

(as should be the case for the binary sequences (cf equations (2.18) and (4.15))), while 
the correlations between odd and even symbols are nearly absent, e.g. km = kAc = 
kDB = kx = 1.47 x for p = 10 ( M  = 4096). The numerical values of standard 
deviations coincide practically with the respective mean values of harmonics (5.5) (cf 
equation (4.13)). The values of shuctural entropies (4.17), (4.226) (without harmonics 
with qn = n) are equal to 7.89 x IOz for p = 10 (in comparison to 8.48 x 10’ predicted by 
equations (4.20) and (4.236) with (M - 1) replaced by (M -2)). The significant deviations 
in figure l(c) are observed for - 30-40 harmonics from 2047. All these results support the 
suggestion of strong randomization in Rudin-Shapiro inflation (preserving, however, the 
partially destroyed underlying two-periodicity). 

Figure 2 illustrates the other example of shvctural ordering, the binary Thue-Morse 
sequence 

A + A B  B + BA. (5.6) 

This sequence has a relatively broad structural spectrum corresponding to the fractal filling of 
the various periodic positions. The dominant role is played by the fractal three-periodicity. 
The even harmonics are equal to zero, and harmonics with small wavenumbers (n << M) 
are asymptotically suppressed (the analytical treatment of these results can be found in 
[2,3,221). 

Taking into account the equality to zero of even harmonics in the Thue-Morse sequence, 
a more correct comparison would be performed with the doubled random sequence (with 
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Figure 1. The spectral characteristics for the Rudin- 
Shapiro sequence generated from the ABCD seed after 
p = 10 iterations (M = 4096). (a )  The structure factor 
harmonics FAA(*") with I < n C M / 2  - 1. (b )  The 
smoothed specr" for s = 100 (equation (4.6)). (c)  
Plot of the logarithm of the number of smcture factor 
harmonics exceeding a given value FAA (full curve). 
The broken line corresponds to the 1h:oretical prediction 
for random sequences (4.2) with Fe, determined by 
equation (5.5). 

n 
a 

1 .o 

0.8 

0.6 

0.4 

0.2 
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0 

C 
Figure 2. The spectral characteristics for the T h u e  
hlom sequence genemed from the A-seed after p = 
12 iterations (M = 4096). (0) The svucture factor 
harmonics Fu(qn)  = F B B ( ~ ~ )  with 1 b n b M / 2  - 
1. (b) The smoothed spectrum for s = 100. (e) 
Plot of the logmilhm of the number of odd structure 
factor harmonics exceeding a given value FAA (full 
curve). The broken line corresponds to the theoretical 
distribution of even harmonics for the doubled random 
counterpart with P = 1. 
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zero odd harmonics), which gives F = 4 for iterations started either from A or B. All 
summations and averages are in this case calculated only for non-zero harmonics. The 
values for the standard deviation and structural entropy (4.17), (4.226) are respectively 
equal to 1.74 and -1.26 x lb for p = 12 iterations started from A ( M  = 4096), in 
comparison to 0.5 and 2.77 x 1@ for the doubled random counterpart. The dependences 
of the logarithm of the number of non-zero harmonics exceeding a given value FAA shown 
in figure Z(c) are also quite different. The maximum amplitude of harmonics FAA(qn) is 
equal to 31.0 (n = 1365, Fm/F = 62.0), and is much higher than the singular random 
outbursts (equation (4.3)). 

Figure 3 illustrates the corresponding variations in the circular pair correlation function 
(equation (2.8)) A K u ( m 0 )  = K ~ ( m 0 )  - I?AA and the current standard deviations come 
grained over a scale of 100 sites according to 

where z& = NA(NA - l ) / M ( M  - 1) and mo = 1, 101, 201,. , , , M/2 .  As is seen from 
figure 3, besides the dominating three-periodicity there are additional long-range correlations 
over - M / 2  sites. 

2 
"y 0.1 a 

0.0 

0 -0.1 

FAA and (b) the coarse-grained current standard 
deviation determined by equation (5.7). 
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The results illustrate the strongly non-random character of the Thue-Morse sequence. 
Although this fact is well known, the example gives a useful test for the criteria concerned. 

5.2. Symbolic dynamics 

The symbolic dynamics describes the coarse-grained behaviour of a dynamical system [4- 
61. A phase space of a system is subdivided by the net of finite cells marked by symbols, 
and the consecutive visiting of the cells during evolution generates the symbolic sequence. 
The natural partitioning exists only for the one-dimensional maps. As an illustration we 
consider the logistic map (e.g. see [23]): 

.%+I = r x d l  - x d  (5.8) 

with 1 -= r 4 4. The partitioning determined by the zero of the derivative of the function 
f ( x )  = r x ( l  - x )  is defined as follows. If 0 c x, c $, then symbol L is placed at the 
nth position, while if f c x, c 1 ,  then symbol R must be substituted. Since the sequence 
is binary, its structural characteristics are determined by the positions of L (or R) symbols 
only (equation (2.18)). The mean value of spectral harmonics is equal to 

- - 
FLL FRR = NLNR/M(M - 1) (5.9) 

where NL and NR are the total numbers of L- and R-symbols, and M = NL t NR is the 
total length of a sequence. 

Figures 4 and 5 present the results for the fully chaotic evolution ( r  = 4) and 
approximate threeperiodic regime with intermittency (r. - r  = 0.002, r, = It 4) [23,24]. 
The numerical parameters for X I  = 0.4 after p = 4095 iterations (M = 4096) are: (i) r = 4; 
NL = 2040, NR = 2056; .& = & = 0.250; ~ ( F L L )  = u(Fw) = 0.251; the values of 
the structural entropies defined by equations (4.17), (4.22a) and (4.22b) are -8.05 x IO3 
and 9.81 x loz; the theoretical values calculated by equations (4.20), (4.23~) and (4.23b) 
are -8.04 x IO3 and 9.86 x IO'; (ii) r, - r = 0.002. rc = 1 +a; NL = 1263, NR = 2833; 

= &R = 0.213; u(F=) = u(Fw) = 0.370; the values of the structural entropies 
defined by equations (4.17), (4.220) and (4.22b) are -1.03 x IO4 and 6.27 x lo2; the 
theoretical values calculated by equations (4.20). (4.23~) and (4.236) are -8.69 x lo3 and 
9.80 x IO2. These results demonstrate clearly the sensitivity of various criteria. We have not 
observed the l/f" tails at small wavenumbers typical for intermittency [23] in figures S(a) 
and 5(6), probably because of the relative shortness of the sequence. 

5.3. Structural analysis Of DNA sequences 

In this subsection we consider an object of greater primary scientific importance, DNA 
sequences. The recent observations of the long-range correlations in a variety of genomes 
19-1 1,251 attach additional interest to this problem. Our considerations will follow mainly 
the lines discussed above, The discussion of the other aspects of Fourier analysis for DNA 
sequences can be found in [7,26] (and the references therein). For the convenience of the 
reader we recall the main facts from genetics (e.g., see, [27]). 

The information for the development of an organism is stored in long DNA sequences 
(called genomes) consisting of four different nucleotides: adenine (A), cytosine (C), guanine 
(G) and thymine (T). The whole genome is subdivided by segments (genes) with different 
genetic functions. The transmission of information from DNA to proteins is governed by 
the triplet genetic code: a triplet of nucleotides corresponds to one amino acid, a sequence 
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of amino acids forms a protein. In 1976 Crick eta! [28] (see also [29]) suggested that the 
primitive progenomes in the earliest stages of evolution were formed by RNY coding triplets 
(where R=(A,G) is purine, Y=(C,T) is pyrimidine, and N is any base). The underlying three 
periodicity has since been identified in various natural genomes and used for determination 
of the protein-coding stretches [30]. Here we shall show how these features are displayed 
via structural symbolic analysis. 

As a particular example we shall use the well studied genome of the bacteriophage 
PHIX174 1311. Similar behaviour has been observed in five other genomes of viruses 
(INxxF1, MIG4XX, MKE. PPR and TOEAV) [32]. The left halves of the symmetrical 
diagonal structure factor spectra for PHIX174 are shown in figure 6. Two peculiar features 
deserve special attention and are separately reproduced in inserts to figure 6. The first 
one is the higher initial harmonics in the A- and T-series (with amplitudes about 5-10 
times the mean level), indicating the underlying superstructure and long-range correlations 
discussed below. The detailed calculations by Voss [IO] show the ubiquitous nature of 
such a behaviour (see also [9,11,25]). The other feature is the very high peaks near 
q,, = 23113. giving evidence for the strong contribution of three-periodic constituents. Their 
relative heights and other structural characteristics are summarized in table 1. We should 
remember that for the random sequences the corresponding standard deviations are equal 
to u(F,,) = Fa, (equation (4.13)) and they may also be considered as structural entropies 
(cf equations (4.20), (4.22~) and (4.23~)). The peaks corresponding to threeperiodicity are 
usually the highest ones in the spectra, but not always. For instance, the maximum for 
the Fcc(q.) structure factor is attained at n = 2116(Fcc/& = 9.32). Criterion (4.4) 
excludes safely the occasional origin of three-periodicity in the A-, G- and T-series, which 
are distinctly more ordered that the C-sequence (see table 1 and figure 9 below). 

The partially destroyed three-periodicity does not exhaust the underlying long-range 
correlations. Figure 7 shows the additional persistent variations for the A- and T-nucleotides 
and mixed antipersistent-persistent behaviours depending on the length scale for the C- and 
G-series displayed through the smoothed spectra (cf section 4.2). The study of Hurst’s 
curves [17] supports this conclusion. Discussion of such a method is, however, outside the 
scope of our present paper and the corresponding results will be published separately [32]. 

The three-periodicity and additional long-range correlations over - IO3 sites are 
also clearly seen in the variations of circular pair correlation functions (equations (2.Q 
(2.9) and (2.16)) shown in figure 8. The current standard deviations in figure 8(b) 
have been coarse grained over a scale of 100 sites analogously to equation (5.7) with 

The positions of maximum harmonics near q. = 2x13 give the key to understanding 
the origin of long-range correlations. The number of harmonics closest to the exact three- 
periodicity is equal ton = 1795. The small but distinct deviations from this value in table 1 
are evidently related to the long-range modulations of the nucleotide densities. 

It is easy to prove the following result. Let k = 2.3, . . . be a series of integers. Then, the 
number of modulations in the envelope of the maxima of cos(q,m) (where q. = 2ma/M) 
during changing m from 1 to M and n/M lying near I lk  is equal to the modulus of the 
difference: 

V R Chechetkin and A Yu Turygin 

= N,(N, - I)/M(M - 1) (equation (2.16)). 

n, = Ikn -MI.  (5.10) 

The crossover from a period k to k -!- 1 occurs for harmonics with n determined by the 
relationship 

(k + 1)n - M = M - kn. (5.11) 
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Table 1. Summary of svuctunl analysis for genome of bacteriophage PHIX174. M = 5386. 

Nucleotides svuetunl 
characteristics A C G T 

Nucleotide content 

Mean value of harmonics, Pma 
(equation (2.13)) 

Standard deviation, a- a(Fue)  
(equation (4.10)) 

Relative height of 
maximum hxmonics (Fmar/F).. 
near qn = 2n/3 and their number 

(equations (4.17) and (4.22a)) 
Informtion entropy 

Relative information emopy 
( ~ S a l d o m  - .W/lS.7 

(equations (4.20) and (4,234) 

Svuctunl entropy for the choice 
defined by (equations (4.17) and (4.2%)) 
Relntive slructural entropy 
((&)random - %)/& 

(equations (4.20) and (4.23b)) 

1291 

0,182 

0.226 

24.2 
(n = 1795) 

-1.25 x I o d  

1.92 x IOm2 

1.19 103 

5.74 x 10-2 

I157 

0.169 

0,170 

8.24 
(n = 1798) 

-1.26~ 104 

-4.58 10-3 

1.u x 10) 

-5.15 x io-' 

1254 

0.179 

0.234 

40.2 
(n = 1797) 

-1.2s 104 

9.50 10-3 

1.19 x IO3 

4.64 x 10-2 

1684 

0.215 

0.365 

53.2 
(n = 1797) 

-1.17 x 10' 

2.54 x IO-' 

1.15 103 

1.x x lo-' 

b c  k c  k w  k.3 kcr kT 

Cross-correlation coeffrcienti 0.140 0.348 0,545 0.179 0.160 0.535 
kvp =k(FmIFpp) 

Relative crossamlation mefficients 0.384 0.725 0,737 0.537 0.221 0.742 
(equations (4.9) and (4.10)) 

Cbfl - &fl.WJam)/k@ 
(equations (4.9) and (4.15)) 

Equation (5.11) corresponds to the coincidence of modulational superperiods at the crossover 
value n. The modulations of the maxima are the longest for the harmonics with ratios n / M  
near l jk ,  and shorten in the crossover regions. The modulational superperiods can be 
observed only when within the interval ( 2 n / ( k  + I ) ,  2njk) there are at least two different 
wavenumbers 4. or 

I / k  - l / ( k  + 1) > I j M .  (5.12) 

If k(k + 1) > M and n < M / k ,  then the realization of superperiods is impossible. The 
shortest superperiods correspond to the transition from two-periodicity (k = 2)  to three- 
periodicity ( k  = 3). As is seen from equations (5.10) and (5.1 l), in this case n, = [ M / 5 ]  
and n = [ 2 M / 5 ]  (the square brackets denote the whole parts of the quotients). 

Returning now to the genome of phage PHD(174, it can easily be checked that harmonics 
with n = 1795 and 1797 generate respectively, 1 and 5 long superperiods overlapping the 
three largest (- lo3 sites) and several shorter (- 400 sites) genes. These superperiods are 
responsible for long-range correlations and are related to the segmentation of the genome 
by the separate genes. 

The distributions of structure factor harmonics according to their heights are shown in 
figure 9. 
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The formation of three-periodicity is performed on the binary rather that tetrary level 
(see also r28.291). This means that subdivision of four different nucleotides into two 
various classes and the subsequent identification of nucleotides within each class retains 
the underlying three-periodicity. The three different subdivisions include: (i) R = (A, G) 
and Y = (C, T); (ii) W = (A, T) and S = (C. G); (iii) M = (A, C )  and K = (G, T). 
For the binary sequences the positions of one subsequence determine fully that of the 
tither, and therefore Fm(qn) = Fyy(qn)(n # 0) ,  etc. The number of maximum harmonics 
and their relative heights for the binary sequences in the genome of PHIX174 are equal 
to: n = 1795, F R R , ~ / & : R R  = 33.8(R - Y); n = 1797, F W W , ~ / & W  = 35.0(W - S); 
n = 1797, FMM,-/.& = 35.7(M - K). The underlying three-periodicity is thus nearly 
degenerate with respect to various subdivisions. The harmonic n = 1795 for the R-Y 
sequence gives, however, the closest value to the exact threeperiodicity. In this sense the 
R-Y sequence produces the most complete threeperiodicity. 

The formation of genomes invokes the general problem of automatic generation of 
sequences with dominating threeperiodicity. It is worth noting that the Thue-Morse model 
may have some interest not only for arithmetic or the theory of multifractal structural spectra 
but for genetics as well. The canonical mechanism of genomic growth (e.g., see, [8]) is 
assumed to be performed schematically by the replication-duplication : : t : : : : : : -+ 
. . . R . .  . Y . .  . R . .  , Y . . .. The Thue-Morse idation R -+ RY, Y -+ YR can be considered 
as the intersite merging of two complementary strands 1 t;; 1;: 1: -+ . . . RY . . , YR I I .. 
The doubled Thue-Morse inflation : : $x : . . . RYYR . . . YRRY , , . is 

. . . RYYR . . morphologically equivalent to the following canonical duplication: , , ,YRRY, ,  , -+ 
. . .RYYR . . . YRRY . . .. Thus, the Thue-Morse zipper mechanism unites elegantly the 
dominating three-periodicity with variability of a sequence. The alternative approach 
[28,29] consists of the consecutive growth of three-periodicity . . . RRY . . . (or . . .RYY . . .) 
with subsequent canonical replication-duplication. 

; : : -+ 

6. Conclusion 

The examples considered above show that the spectral representation is a versatile and 
powerful tool for the identification of random constituents in symbolic sequences. The 
additional advantage of the symbolic Fourier transformation is related to the numerous fast 
computational algorithms known in the literature [18,33]. The technique of analysis of 
Fourier spectra is also well developed. 

The spectral representation permits identification of finite-memory effects as well. 
The qualitative picture may be described by using the standard Ornstein-Uhlenbeck 
approximation [15] with exponential decay both for the pair correlation functions 
(equation (2.8) with mo -= M/2) and p-periodic oscillations, 

(6.la) 

(6.lb) 

and by the reciprocating Wiener-Khiichin relationship (2.10). An elementary consideration 
shows that in the case (6.1~1) the small wavenumber range of the spectrum with qn 5 l / r c  
will he enriched by the higher harmonics (if A K  > 0) or have a deepening (if AK e 0), 
while in the case (6.lb) the finite-memory effects will produce the typical Lorentzian-like 
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smearing of Bragg peaks with widths Aq - l/rc. In this sense the randomly destroyed 
three-periodicity in DNA sequences (or two-periodicity in the Rudin-Shapuo substitution) 
can easily be differentiated from the finite Markovian memory with r, = 3 or from the 
damping three-periodicity with finite decay. "be extension of statistical criteria to the 
random sequences with memory needs, however, separate investigation. 
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