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On the spectral criteria of disorder in non-periodic sequences:
application to inflation models, symbolic dynamics and pna
sequences
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Troitsk Institute of Innovation and Thermonuclear Investigations—TRINITE, 142092, Troitsk,
Moscow Region, Russia

Received 11 October 1993

Abstract. The spectral representation gives an effective approach to the analysis of statistical
characteristics of symbolic sequences. We derive the corresponding criteria for the random
case. The criteria ensure the dichotomic classification (random-non-random) for relatively short
sequences of about several thousand symbols. The theory is applied to inflation models, symbolic
dynamics and DNA sequences.

1. Introduction

Sequences of symbols are the usual tool of communications and appear in various physical
and non-physical problems. The physical applications] are related to quasicrystals and
inflation models [1-3], as well as symbolic dynamics [4-6]. The analysis of DNA sequences
attracts interest both from physicists and specialists in genetics [7-11], while the symbolic
sequences in natural languages and in the transmission of signals are the objects of
investigation in linguistics and information theory. Very often g prior{ information on the
underlying algorithms is absent. In this case the first step consists of the simple dicohotomic
classification: is a sequence random or non-random? If a sequence contains both regular
and chaotic contributions, the second step consists of the separation of different parts.

In [12,13] the relevant criteria have been discussed from the information theoretic
viewpoint [14]. Here we consider an alternative approach based on the spectral
representation of a symbolic sequence. The method is a slight modification of the technique
used in the theory of quasicrystals and substitutional sequences [2,3]. The layout of our
paper is as follows. The general formulation of the problem is presented in section 2,
The expressions for the characteristic and probability distribution functions for spectral
harmonics are derived in section 3, while the particular criteria of disorder are given in
section 4. These results are applied to the analysis of inflation models, symbolic dynamics
and DNA sequences in section 5. The final section contains some concluding remarks.

} The literature devoted to the problems mentioned below is very vast. Por this reason we will mention only
monographs, reviews and papers with elements of review, where further detailed references can be found.
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2. Spectral representation of sequences

2.1. Structure factor of sequence

The general idea of our approach consists of the Fourier representation of a symbolic
sequence and derivation of the statistical criteria for the distributions of the spectral
harmonics. In this and the following sections we present the main results of the general
theory.

Let us consider an abstract sequence of length M and ! different symbols {A;}. A
sequence can equivalently be described in terms of the position function:

[ 1 if the oth symbol occupies a position

Pma = .

0 otherwise (2.1}
o€ (A, ... A m=1...M.

Then, the Fourier harmonics corresponding to a subsequence of the wth symbols are
determined according to

M
Pa(gn) = MY " o eXD(—igam) Gn = 2xn/M n=01,...,M—-1. (22)

m=1
The reciprocal transformation is given by

M-1
Pma=MV2Y " pulg)explgam)  m=1,....M. (2.3)

a=0

The zeroth Fourier harmonic does not contain any positional information and is related only
to the total number of the ath symbols, N,:

Pa(0) = Ny/ M2 (2.4)
The reality of g, leads to the condition
0u(gn) = (2 — gn) 2.5)

(the asterisk denotes complex conjugation).
The pair correlations (see below) are characterized by the structure factors:

Fop(@n) = Pu(gn)pg(gn)- (2.6)
As is seen from equation (2.5),
Foplqn) = Fga(2m — g2) (2.7}

and, in particular, a diagonal structure factor Foe(gq,) is a symmetric function of ¢, with
the centre of symmetry at g, = .
The pair correlations can also be described in terms of the circular correlation functions:

M
£5(mo) = M“Elﬁm,aﬁm+mo.g (2.8)
m=
- {Pm.a lsmg M
P =

2.9
Pm—M o M+l<mg2M -1 (2.9)
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where 1 € mg € M — 1. Both characteristics are mutually connected through the analogue
of the Wiener—Khinchin relationship [15]:

M=1
Solma) = M7 )" Fap(gn) exp(—igumo). (2.10)

n=0

It follows from definitions (2.8) and (2.9) that
K g(mo) = Kg, (M — my). (2.11)
The higher products of Fourier harmonics are related to the higher correlation functions.

2.2, Sum rules

The statistical criteria are expressed through a set of universal (independent of a particular
distribution of symbols) mean spectral parameters determined by the exact sum rules. The
first relationship can be derived directly from equations (2.1)~(2.7), and is given by

M—i M
Z Faﬁ(‘?ﬂ) = Z Pm,aPm,pg = Sug Ny (2.12)
n=0 m=1

where 3¢ is the Kronecker symbol. Taking into account equation (2.4) for the zeroth
harmonics, one obtains

M-1
Fu,ﬂ = (Z Faﬂ(‘?ﬂ))(M - I)_] = (5aﬂNa ~ Ny Ng/M)/ (M — . (213

n=]

Analogously, one derives the more general sum rule

M
P Gy} o - P, (@) = M-22 Z Pm.cy -+ P,
0 S (M —1)/ M m=1
(4'n| +'“+f1:=,)mﬂﬂz~"1=0
= Guyay - + - By, MO P2 N, (2.14)

Equation (2.10) relates the mutval deviations of circular correlation functions and
structure factor harmonics with n # O from their respective mean values:

M-1 M-1
3 (K55 mo) — RE)KSs0mo) = Be) = M1 S (Fug(an) — Fap) (Fls(an) — Fp)
mo=! r=1

(2.15)

where

M-1
KS(moy = (M — 1)1 Y Kig(mo) = (NaNp — SupNo)/M(M — 1). (2.16)

mo=}

Similar expressions can be derived for the higher correlation functions as well.
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2.3. Excluded volume effects

One position is occupied by only one symbol and there are no voids in a sequence. This
condition imposes the additional restrictions on the two-valued position functions (2.1)

!
D Pma=1 @2.17)
o=l

i.e. the positions of subsequences for any (! — 1) different symbols determine unambiguously
that of the remaining subsequence. In terms of Fourier harmonics the same restriction is
formulated by

1
2 lg) =0  (n#£0). (2.18)
o=1

Condition (2.17) leads to the specific correlations (called traditionally ‘excluded volume
effects’) even for the random sequences.

3. Statistical characteristics of random sequences

3.1. Characteristic function

The statistical properties of Fourier harmonics can be determined by the averaging of the
characteristic {or generating) function [15, 16]:

I M-=1
Z =exp (i >y ua(qn)pa(q,.)). 3.1)
o=l n=]

It is convenient to impose on the auxiliary variables u,(g,) the same condition as in
equation (2.5), i.e.

o (dn} = ua (27 — gn). (3.2)
Using definitions (2.1} and (2.2), Z is rewritten in the form

[

z=T]T]0+ rmata« (3.3)
a=l m=1}
where
M-=1
Zma = EXP (iM””2 > ua(q,aexp(—iq,,m)) -1 (3.4)
n=l1

Thus, the problem is reduced to the averaging of various products of position functions
pm.a .
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The averaging should be performed over the ensemble of random realizations with the
same symbol content, and is determined by the simple combinatorics

Y T2 " M
Py, Ay Py A Prgpeay+1 A Pog i) = O Zp 20/ C (3.5)

at v

Ll Lt

3.6)
..k =m =1

Here the angular brackets denote averaging over the ensemble, £, is the number of position
functions corresponding to the symbols A, and N, is the total aumber of symbols A, in
a sequence with total length M. All position subscripts on the LHS of equation (3.5) must
be different. The RHS of equation (3.5) is equal to the ratio of two combinatorial factors:
Chl  x is the total number of different random realizations, while C,‘:,f:i‘!:_‘jﬁ', £, is the total
number of realizations with respective Ly, ..., L; positions for different symbols held fixed
(these are just the positions filled by symbols corresponding to the LHS of equation (3.5)).
After collection of varicus random products and symumetrization over identical symbols, the
final expression for the averaged characteristic function {Z) takes the form

LygN W LN M
— M ’ M—L|——Lt
(Z =1/Cl_ 5 ( > > MM/t Ll
Lieni=0 mymy g, =1
rer sz,+...+L;-A1) . 3.7

The prime on the sum over different positions means that all terms with at least two (or
more) coincident position subscripts should be discarded.

The consideration shows that in the limit N, 3 1, M 3 1 the asymptotic (up 0
~ 1/Ny, 1/M) cumulant expansion for In{Z) is given by

In(z)~ 3 3 it o @n) - Py @a,)

) {gwt N
n

v pA] (an] +_.+r,_]+l) o Py (q"r|+...+rt )» uAl (Qn;)

o

n

G lpy (qu,—]) e uAf(qﬂ,-l.p",.pq_l-H) e Uy (QJ’!n-p._-m )° (38)

Here the summations are restricied by the inequalities 0 € rp K M, i+ -+ €K M,
2n/M < g, < 27(M — 1)/ M. Besides that, in each cumulant o4, (gn,)- .- 24, (q,Irl )

a partial sum for any subset of wavenumbers except the sum over all wavenumbers cannot
be equal to 2z p (where p is an integer), ie.

(Z qﬂr) de 2‘7"’ # 0 an € (qn: LI | an|+.,,+;,) (3.9&)

@n, + -+ 4, ...,,) M0d 27 = 0. (3.95)

The expressions for cumulants can be derived explicitly either directly from equation (3.7)
or (this way is much simpler) by the recurrent extraction of the comesponding contributions
from the sum rule (2.14).
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3.2, Probability distribution functions

Below we restrict ourselves mainly to the statistical properties of harmonics (and their
complex conjugates) with coincident wavenumbers g,;, which are in the leading terms with
respect to M~!/2 determined by the characteristic function

(2) -—exp( Z Faﬁuauﬁ) (3.10)

The same statistics can be described in terms of the probability distribution function for
arbitrarily chosen (I — 1) symbols (since the remaining harmonic is expressed through
equation (2.18)). It is obtained by reciprocating the characteristic function (3.10) for any
(/ — 1) variables (and egualizing the remaining one to zero),

-1
(. P V- " S B X (. =1 od o ( - Y Ry "papﬁ)
o, f=1
(3.11)
where
<t = (-1 (-1} ¢-1 (l—l) 1 a=y
;Rw Fgy ﬁZ_:F Rg, " =bay =1 sty (3.12)

F“:{” isan (f — ) x (I — 1) submatrix of Faﬁ {(see equation (2.13)} for the chosen {f — 1)

o
symbols, det | F, Fl- l)ll is its determinant, the complex Fourier harmonics g, are described
in terms of modulus |#x| and phase ¢,

P = {Pa] eXplige) G = |po] €Xp(—igy) (3.13)

and any function ®V=" of variables |o,], ¢, is averaged according to

(@9 = f o0-D pl-Ngg, | (3.14)

Ay = | Pg, 1]y | Ay /7 o - | Py 1Py | APy, /70 (3.15)
with integrations over 0 < [py] € 00, 0 € g, € 27w,
The distribution functions for the lower subsets of symbols can be obtained from P,

by integrations over the remaining variables. In particular, the one-symbol distribution
function is given by

P(Fa) = exP(_Faa/ﬁaa)/ﬁaa (3.16)

and coincides with the well known Rayleigh distribution [15].
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4, Criteria of disorder in non-periodic sequences

4.1, Distribution of amplitudes of harmonics

The results of the previous section present some particular criteria of disorder that are useful
in applications. The first test concerns the amplitudes of harmonics.

Due to the symmetry property (2.7} only half of the (M — I} structure factor harmonics
Faalgn) 1s statistically independent. Consider for definiteness the left half of the spectrum
with 0 < ¢, < 7. As is seen from equatton (3.16), the probability of finding a given
harmonic with an amplitude exceeding a fixed value F? is equal to

@ —_
Prob{Fpe > F) = fF o AFue P1(Fyg) = exp(—F ./ Fur). (4.1)

ot

This means by definition that the average number of harmonics with heights exceeding F9
is given by

{na) = (M/2) exp(—Fy0)/ Fua). (4.2)
The condition {r,) = 1 determines the characteristic maximum value:
Fuumax = Foo IN(M/2). (4.3)

Since the probability that all the M/2 harmonics would have heights less than FY is equal
to [1 — exp(—FQ/ Fue)IM/2, the probability that at least one from the M/2 harmonics
exceeds F® is defined as

Prob{Fue > FO M2} =1 — [1 — exp(—F 9/ Faa) 1M
~ 1 —expl— exp(—(FQ — Foomax)/Faa)l. (4.4

Analogously, the probability that at least one from the M /2 harmonics has an amplitude
less than F9 is determined as

Prob{Fue < F2; M/2} = 1 —exp(— F2/ Py min) (4.5q)
Faa,min = —omt/(M/z)- (45b)

The values Fyy max and Fyy,mn characterize the influence of mesoscopic fluctuations related
to the particular random reatizations.

4.2, Smoothed spectra

In many cases the order and disorder coexist with each other. It is very important to extract
the underlying long-range correlations (if they exist). For example, /¢}-like fluctuations
in Fee(gn) determine the (anti)persistent variations in the coarse-grained local density of
the wth symbols depending on the sign of v (i.e. the retaining or reversing in the tendency
of variations during motion along a sequence from the beginning to the end) [17]. There
are several methods for obtaining a solution to this problem [18). The simplest consists of
the partial smoothing of spectra in order to display the underlying trends. The smoothing
means movable averaging over s left and right neighbours,

n+s

Faalg) = @5+ 17" Y Fualgw). (4.6)

n'=n-s
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If s &« M, then the correlations between harmonics with different g, may be neglected and

the approximate probability distribution function for the amplitudes of Fya(gn) is given by
the Nakagami distribution [19):

0o o n+ts
Py(Fo) = fo fo «S(Faa—(zwl)-‘ > Faa(q,,r))PmFm(qn_s))

oo PU(Foa(gnas ) GFaa(@n—s) . . . AF oo (Gnis)
= [(25 + 1)/ Fou P FE S T (25 + 1) expl— (25 + 1) Faa/ Foge] (4.7

where P (Fy,(q,)) is defined by equation (3.16) and F'(25 + 1) is a gamma function. The
mean values of the height and standard deviation corresponding to the Nakagami distribution
(4.7) are equal respectively to

(Fag) = Foua o2 (Fon) = F2, /(25 + 1) (4.8)

In the limit M > 5 >» 1 the distribution (4.7} tends to the Gaussian function, with the mean
value and standard deviation determined by equation (4.8}.
4.3, Mutual correlations

The excluded volume effects lead to the specific correlations even for the random sequences.
The mutual correlations are charactenized by the cross-correlation coefficients [15, 16]:

M-1
k(Fyp|Fys) = Z(Faﬁ(qn) — Fap)(Fy5(gn) — F5)/ (M — 1) (Fo)o (Fyp) 4.9
n=]
M-I _ _
o (Fop) = Z(Faﬁ (gn) — Fap)(Fog(@n} — Fag) /(M — 1) (4.10)
n=1

(see equations (2.6) and (2.13) for clarification of the nomenclature). The same characteris-
tics can be calculated by the circular pair correlation functions (see equations (2.8)—(2.10),
(2.15) and (2.16)):

o (KS) = 0 (Fog)/ M2 (4.11)
k(KZg|KSp) = k(Fap| Fys). (4.12)

Since the zeroth harmonics or correlation functions for mg = 0 do not contain any positional
informatton, they are always discarded in the corresponding spectral sums.

Assuming the equivalence of the averaging over spectra to that over the ensemble of
random realizations, and using equation (3.10) (or equation (3.11)}, one obtains

02 (Fup) = FouFp (4.13)
k(Fdﬁleﬁ) = Fayﬁsﬂ/(i‘aaﬁﬂﬁﬁy;’ﬁaa)lﬂ (4.14)
in particular, for & # 8,

k(Fau|Fpg) = kag = NoNg /(M — N )(M — Np). (4.15)
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Equation (4.15) has a simple probabilistic meaning. The cross-correlation coefficient &5 is
equal to the probability of simultaneously finding the ceth symbols in positions free from
the fth symbols and vice versa. The standard deviation o (Fyy) = F,y coincides with its
counterpart for the spectrum of white noise [18].

At the end of this subsection we give an estimate for the cross-correlations between two
uncorrelated random sequences (1 and 2) with the same lengths M:

(FRIFSh = Z(F“’(qn) FEVF(gm) — D) (M = Do (Fyo ().

n=1

As can easily be shown, after the independent averagings over two sequences the
corresponding moments are approximately equal to

(P o 1Fy) ~ 0 4.162)
UHFRED) ~ Y MFES EY (FOFRFRFD +1). (4.168)

Thus, the mesoscopic random cross-correlations do not exceed an order of magnitude
~ M~12, The relative mesoscopic fluctuations in equations (4.13)(4.15) are of the same
order.

4.4. Structural entropy of sequence

Let a function f(x) have monotonous first and smooth second derivatives. Then, an equation
f'{x} = const has a unique solution for any given value of the constant. Consider, now, a
spectral sum,

M-1
Sa=_ [(Faulan) (4.17)
n=1
under the additional restriction
M=1
Z Fuolgn) = const (4.18)
n=1

{corresponding to the sum rule (2.13)). Using the standard technique of Lagrange
multipliers, it is easy to see that the conditional extremum of S, is attained for the strictly
uniform distribution of structure factor harmonics over the spectrum:

Faa(Qn) = Il‘::m- (419)

Since the heights of Fourier harmonics for the random sequences are distributed over
wavenumbers g, more uniformly than for an ordered state (cf., for example, the crystal
and quasicrystal spectra with sets of sharp Bragg peaks), a sum S, may serve as a structural
entropy. The quantitative criterion for the random sequences can be obtained by averaging
§, with the probability distribution function (3.16):

{S2) = (M — D{f (Faa)) 4.20)

CF(Faa)) = fo £ (Fra) Py (Foa) dF. @21)
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The typical choices of f(F,,) are given by

In Foe (4.22a)
f(Faa) = § —Fae In Foy (4,22b)
Fr. (4.22¢)

with respective mean values equal to

InF,, ~C {4.23q)
{f(Faa)) = _F—an' In F-cm - Paa(l -0 (4-23b)
I(r+ 1)FF, (4.23¢)

where Fpy = Np(M — Ny)/M(M —1), C = 0.577215... is the Euler constant, and I'(r+1)
is a gamma function. Function (4.224} comresponds to the standard spectral definition of
information entropy [18] (the various definitions are equivalent only for quasi-Gaussian
statistics). The particular calculations show, however, two serious drawbacks in this case.
First, the weak logarithmic dependence is not sensitive enough and, secondly, S, tends
to infinity for any hidden periodicity (this choice does not discern, for example, between
a doubled random sequence and a two-periodic sequence). In practical applications the
choice of the function f(F,,) in equation (4.17) is restricted by the requirement that the
mesoscopic fluctuations related to the particular random realizations are small.

Functions (4.224) and (4.225) correspond to the conditional maximum, while function
{(4.22¢) gives the conditional maximum for 0 < r < 1 and the minimum for r > 1.

The more universal criteria can be obtained by using the relative variables Fyq(gn)/ Fac
or the local spectral probabilities introduced in [3],

Pa(@n) = Fau(gn)/(M — 1) Fya. (4.24)

Generally, the multidimensional fractal formalism [20] should be applied to the many-
symbolic sequences with scaling invariance:

M=1
D PaGn) . P37 (gn) ~ (M = 1yTF o0, (4.25)
n=1

As is seen from equations (4.5) and (4.23¢), the random mesoscopic fluctuations dominate in
the range of exponents r < —1. In the range of positive values r > 0 the finite-size effects
related to the singular outbursts (4.3) start to become important since r 2 In M/Inln M,
and special measures should be taken to avoid the artefact multifractality [3].

5. Particular applications

5.1. Substitutional sequences

In this section, several applications of the spectral criteria will be illustrated. In order to
demonstrate the sensitivity of various criteria, one of the sequences is chosen to be nearly
random, while the cther is distinctly non-random but has a relatively broad spectrum. We
begin with the substitutional sequences. Their growth is determined by consecutive iterations
according to the inflation rule:

A]-—)G’l(Ai,....A[),...,A!"—i'O'[(A],...,A[) (51)
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where o,(Ay, ..., A)) is some combination of the symbols Ay, ..., A;. The corresponding
inflation rules may be both deterministic (as in equation (5.1)) and probabilistic (e.g. see

(21)).
Figure 1 shows typical results for the four-symbol Rudin—-Shapiro substitution

A — AC B — DC C—+ AB D — DB. {5.2)

The Rudin—Shapiro infiation is known to be strongly randomizing [2,3]. For definiteness
we consider the iterational growth from the symmetric seed ABCD. As can be checked,
during subsequent iterations, A and D occupy invariably only the odd positions, while B
and C are placed in even sites. This gives sharp coherent Bragg peaks at ¢, =,

pa(0) = pp(0) = pc(0) = pp(0) = —pa(r) = pp(x) = pc(n) = —pp(n) = N/M'?
(5.3)

N =2 M = 27%2 p=l 5.4

where p is the number of iterations. For this reason such a sequence can be represented either
by the intersite merging of two quasi-random binary sequences or by the partial destruction
of exact two-periodicity. The coherent harmonics at ¢, = x should be subtracted from the
corresponding criteria for the random sequences, e.g. (see equations {2.7), (2.12) and (5.3))

) Mj2-1
Foq = 2( Z Fau(%)) (M — 2)_1 = 2p—2/(2p+1 —1) (5.5)

n=1

and analogously for equations (4.9) and (4.10).

The positions of A and D {or B and C) are completely correlated, kap = kpc = 1
(as should be the case for the binary sequences {cf equations (2.18) and (4.15)}), while
the correlations between odd and even symbols are nearly absent, e.g. kap = kpc =
ko = kpe = 1.47 x 1073 for p = 10 (M = 4096). The numerical values of standard
deviations coincide practically with the respective mean values of harmonics (5.5) (cf
equation (4.13)). The values of structural entropies (4.17), (4.22b) (without harmonics
with g, = ) are equal to 7.89 x 10* for p = 10 (in comparison to 8.48 x 10? predicted by
equations (4.20) and (4.236) with (M — 1) replaced by (M —2)). The significant deviations
in figure 1(c) are observed for ~ 30-40 harmonics from 2047. All these results support the
suggestion of strong randomization in Rudin—Shapiro inflation (preserving, however, the
partially destroyed underlying two-pertodicity).

Figure 2 illustrates the other example of structural ordering, the binary Thue-Morse
sequence

A - AB B — BA. (5.6)

This sequence has a relatively broad structural spectrum corresponding to the fractal filling of
the various periodic positions. The dominant role is played by the fractal three-periodicity.
The even harmonics are equal to zero, and harmonics with small wavenumbers (n € M)
are asymptotically suppressed (the analytical treatment of these results can be found in
[2.3,22]).

Taking into account the equality to zero of even harmonics in the Thue-Morse sequence,
a more correct comparison would be performed with the doubled random sequence (with
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Figure 1. The spectral characteristics for the Rudin—
Shapiro sequence generated from the ABCD seed after
p = 10 iterations (M = 4096). (a) The structure factor
harmonics Faa(g,) with 1 € n € M/2— 1. (b) The
smoothed spectrum for s = 100 (equation (4.6)). (c)
Plot of the logarithm of the number of structure factor
harmonics exceeding a given value Faa (full curve).
The broken line corresponds to the theoretical prediction
for random sequences (4.2) with Fu, determined by
equation {5.5).

Figure 2. The spectral characteristics for the Thue—
Morse sequence generated from the A-seed after p =
12 iterations (M = 4096), (@) The structure factor
harmonics Faa(g,) = Feplga) with 1l € n € M/2 —
1. (b) The smoothed spectrum for s = 100, {c}
Plot of the logarithm of the number of odd structure
factor harmonics exceeding a given value Fas (full
curve), The broken line corresponds to the theoretical
distribution of even harmonics for the doubled random
counterpart with F = a‘z
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zero odd harmonics), which gives F = % for iterations started either from A or B. All
summations and averages are in this case calculated only for non-zero harmonics. The
values for the standard deviation and structural entropy (4.17), (4.22F) are respectively
equal to 1.74 and —1.26 x 10® for p = 12 iterations started from A (M = 4096), in
comparison to 0.5 and 2.77 x 107 for the doubled random counterpart. The dependences
of the logarithm of the number of non-zero harmonics exceeding 2 given value Fas shown
in figure 2(c) are also quite different. The maximum amplitude of harmonics Faa(g.) 1s
equal to 31.0 (n = 1365, Fua/F = 62.0), and is much higher than the singular random
outbursts (equation {(4.3)).

Figure 3 illustrates the corresponding variations in the circular pair correlation function
(equation (2.8)) AKaa(mo) = Kaa(mg) — Kaa and the current standard deviations coarse
grained over a scale of 100 sites according to

nmp+99 _ 1/2
Omg(KS0) = ((100)-1 D (Kialmp) — K;A)Z) (5.7)

my=my

where IET;A = Na(Na — D/M(M — 1) and mq = 1, 101, 201,..., M/2. As is seen from
figure 3, besides the dominating three-periodicity there are additional long-range correlations
over ~ M /2 sites.
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The results illustrate the strongly non-random character of the Thue-Morse sequence,
Although this fact is well known, the example gives a useful test for the criteria concerned.

5.2, Symbalic dynamics

The symbolic dynamics describes the coarse-grained behaviour of a dynamical system [4-
6]. A phase space of a system is subdivided by the net of finite cells marked by symbols,
and the consecutive visiting of the cells during evolution generates the symbolic sequence.
The natural partitioning exists only for the one-dimensional maps. As an illustration we
consider the logistic map (e.g. see [23]):

Xpq1 = rxg(l — x5) 5.8

with 1 < r < 4. The partitioning determined by the zero of the derivative of the function
JF(x) = rx(1 —x) is defined as follows. If 0 < x, < %, then symbol L is placed at the
nth position, while if % < X, < 1, then symbol R must be substituted. Since the sequence
is binary, its structural characteristics are determined by the positions of L (or R) symbols
only (equation (2.18)). The mean value of spectral harmonics is equal to

FLL = Pre = NLNo/M(M - 1) (5.9)

where N, and Ng are the total numbers of L- and R-symbols, and M = Ny 4 N is the
total length of a sequence.

Figures 4 and 5 present the results for the fully chaotic evolution (r == 4) and
approximate three-periodic regime with intermittency (r. —r = 0.002,r, = 14- V8 [23, 24].
The numerical parameters for x; = 0.4 after p = 40935 iterations (M = 4096) are: (i) r = 4;
Ny = 2040, Ng = 2056; Fip = Fpr = 0.250; o (FLL) = o(Fpr) = 0.251; the values of
the structural entropies defined by equations (4.17), (4.22a) and (4.226) are —8.05 x 10°
and 9.81 x 10?%; the theoretical values calculated by equations (4.20), (4.234) and (4.23b)
are —8.04 x 10° and 9.86 x 10%; (ii) re — r = 0.002, r, = 1 + +/8; N = 1263, Ny = 2833;
Fi = Frp = 0.213; o(F) = o(Frr) = 0.370; the values of the structural entropies
defined by equations (4.17), (4.22a) and (4.22b) are —1.03 x 10* and 6,27 x 10% the
theoretical values calculated by equations (4.20), (4.23a) and (4.236) are —8.69 x 10° and
9.80 x 107, These results demonstrate clearly the sensitivity of various criteria. We have not
observed the 1/ tails at small wavenumbers typical for intermittency [23] in figures 5(a)
and 5(b), probably because of the relative shortness of the sequence.

5.3, Structural analysis of DNA sequences

In this subsection we consider an object of greater primary scientific importance, DNA
sequences. The recent observations of the long-range correlations in a variety of genomes
[9-11,25] attach additional interest to this problem. Our considerations will follow mainly
the lines discussed above. The discussion of the other aspects of Fourier analysis for DNA
sequences can be found in [7,26] (and the references therein). For the convenience of the
reader we recall the main facts from genetics (e.g., see, [27]).

The information for the development of an organism is stored in long DNA sequences
(called genomes) consisting of four different nucleotides: adenine (A), cytosine (C), guanine
{G) and thymine (T). The whole genome is subdivided by segments (genes) with different
genetic functions. The transmission of information from DNA to proteins is governed by
the triplet genetic code: a triplet of nucleotides corresponds to one amino acid, a sequence
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of amino acids forms a protein. In 1976 Crick er al [28] (see also [29]) suggested that the
primitive progenomes in the earliest stages of evolution were formed by RNY coding triplets
{where R=(A,Q) is purine, Y=(C,T) is pyrimidine, and N is any base), The underlying three-
periodicity has since been identified in various natural genomes and used for determination
of the protein-coding stretches [30]. Here we shall show how these features are displayed
via structural symbolic analysis.

As a particular example we shall use the well studied genome of the bacteriophage
PHIXI74 [31]. Similar behaviour has been observed in five other genomes of viruses
(INXXF1, MIG4XX, INIKE, PPR and TOEAV) [32]. The left halves of the symmetrical
diagonal structure factor spectra for PHIX 174 are shown in figure 6. Two peculiar features
deserve special attention and are separately reproduced in inserts to figure 6. The first
one is the higher initial harmonics in the A- and T-series (with amplitudes about 5-10
times the mean level), indicating the underlying superstructure and long-range correlations
discussed below. The detailed calculations by Voss [10] show the ubiquitous nature of
such a behaviour (see also [9,11,25]). The other feature is the very high peaks near
Gn = 27 (3, giving evidence for the strong contribution of three-periodic constituents. Their
relative heights and other structural characteristics are summarized in table 1. We should
remember that for the random sequences the corresponding standard deviations are equal
t0 0 (Faa) = Fae (equation (4.13)} and they may also be considered as structural entropies
(cf equations (4.20), (4.22¢) and (4.23¢)). The peaks corresponding to three-periodicity are
usually the highest ones in the spectra, but not always. For instance, the maximum for
the Fee(gs) structure factor is attained at n = 2116(Fec/Foe = 9.32). Criterion (4.4)
excludes safely the occasional origin of three-periodicity in the A-, G- and T-series, which
are distinctly more ordered that the C-sequence (see table 1 and figure 9 below).

The partially destroyed three-periodicity does not exhaust the underlying long-range
correlations. Figure 7 shows the additional persistent variations for the A- and T-nucleotides
and mixed antipersistent—persistent behaviours depending on the length scale for the C- and
G-series displayed through the smoothed spectra (cf section 4.2). The study of Hurst’s
curves [17] supports this conclusion. Discussion of such a method is, however, cutside the
scope of our present paper and the corresponding results will be published separately [32].

The three-periodicity and additional long-range comrelations over ~ 10° sites are
also clearly seen in the variations of circular pair correlation functions (equations (2.8),
(2.9) and (2.16)) shown in figure 8. The current standard deviations in figure 8(&)
have been coarse grained over a scale of 100 sites analogously to equation (5.7) with
K, = Ny(Ny — 1)/M(M — 1) (equation (2.16)).

The positions of maximum harmonics near g, = 27 /3 give the key to understanding
the origin of long-range correlations. The number of harmonics closest to the exact three-
periadicity is equal to n = 1795, The small but distinct deviations from this value in table 1
are evidently related to the long-range modulations of the nucleotide densities.

It is easy to prove the following result. Letk = 2, 3, ... be a series of integers. Then, the
number of modulations in the envelope of the maxima of cos(g,m) (where g, = 2mn/M)
during changing m from 1 to M and n/M lying near 1/k is equal to the modulus of the
difference:

ns = lkn — M|. (5.10)

The crossover from a period k to k + 1 occurs for harmonics with n determined by the
relationship

k+lin—-M=M-—kn. (5.11)
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Table 1. Summary of structural analysis for genome of bacteriophage PHIX174, M = 5386.

Structural Nucleotides

characteristics A C G T

Nucleotide content 1291 1157 1254 1684

Mean value of harmonics, Frq 0.182 0.169 0.179 0.215
(equation (2.13))

Standard deviation, oy = 0{Fge) 0.226 0.170 0.234 0.365
(equation (4,10

Relative height of 24.2 824 40.2 53.2

maximum harmonics (Fa / Flea {n = 1795) (n = 1798) (n=1797) {n=1797)

near g, = 27 /3 and their number

Information entropy —125x 10*  —126x10° =125 % 10* 117 x10¢
(equations (4.17) and (4.22a))

Relative information entropy 192x 1072 —458% 1073 950x 1077 2,54 x 102

((Sa)mndom = S«)/|Sn-|
(equations (4.20) and (4.23a))

Structural entropy for the choice 1.19 x 10° 1.23 x 10% 119 x 107 1.15 x 10°
defined by (equations (4.17) and (4.225))
Relative structural entropy 57 1072 ~515x 107 464x107% 124 x 107}

((Sa)mndom - Sa)/sa
(equations (4.20) and (4.235))

kac kag kar ke ker kgr

Cross-correlation coefficients 0.140 0.348 0.545 0.179 0.160 0.535
kog = k(Faa|Fgp)

(equations (4.9} and (4.10}}
Relative cross—correlation coefficients 0.384 0.725 0.737 0.537 0.221 0.742
(hkap = kap.andom)/ kag

(equations (4.9} and (4.15))

Equation (5.11) corresponds to the coincidence of modulational superperiods at the crossover
value 7. The modulations of the maxima are the longest for the harmonics with ratios n/M
near 1/k, and shorten in the crossover regions. The modulational superperiods can be
observed only when within the interval 2z /(k + 1), 27 /%) there are at least two different
wavenumbers g,, or

1/k —1/(k+ 1) > 1/M. (5.12)

K k(k+1) > M and n < M/k, then the realization of superperiods is impossible. The
shortest superperiods correspond to the transition from two-periedicity (k = 2) to three-
periodicity (k = 3). As is seen from equations (5.10) and (5.11), in this case n; = [M/5]
and n = [2M/5] (the square brackets denote the whole parts of the quotients),

Returning now to the genome of phage PHIX 174, it can easily be checked that harmonics
with n = 1795 and 1797 generate respectively, 1 and 5 long superperiods overlapping the
three largest (~ 10? sites) and several shorter (~ 400 sites) genes. These superperiods are
responsible for long-range correlations and are related to the segmentation of the genome
by the separate genes.

The distributions of structure factor harmonics according to their heights are shown in
figure 9.
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The formation of three-periodicity is performed on the binary rather that tetrary level
{see also [28,29])., This means that subdivision of four different nucleotides into two
various classes and the subsequent identification of nucleotides within each class retains
the underlying three-periodicity. The three different subdivisions include: (i) R = (A, G)
and Y = (C,T); (i) W = (A, T) and S = (C,G); (fii) M = (A,C) and K = (G, T).
For the binary sequences the positions of one subsequence determine fully that of the
other, and therefore Frr(g.) = Fyy(ga)(n # 0), etc. The number of maximum harmonics
and their relative heights for the binary sequences in the genome of PHIX174 are equal
to: = 1795, Frgma/Frr = 33.83QR ~ Y); n = 1797, Fyyw.ma/Fww = 35.0(W — 8);
n = 1797, Fum max/Fam = 35.7(M — K). The underlying three-periodicity is thus nearly
degenerate with respect to various subdivisions. The harmonic # = 1795 for the R-Y
sequence gives, however, the closest value to the exact three-periodicity. In this sense the
R-Y sequence produces the most complete three-periodicity.

The formation of genomes invokes the general problem of automatic generation of
sequences with dominating three-periodicity. It is worth noting that the Thue~Morse model
may have some interest not only for arithmetic or the theory of multifractal structural spectra
but for genetics as well. The canonical mechanism of genomic growth (e.g., see, [8]) is

assumed to be performed schematically by the replication—duplication :Y::’.E.‘,. -
...R...Y...R...Y.... The Thue-Morse inflation R — RY, Y — YR can be considered
as the intersite merging of two complementary strands = ° %‘_'_‘_}{‘_‘_: —-...RY...YR...

The doubled Thue-Morse inflation ~**JE ¥R~ RYYR...YRRY... is

morphologically equivalent to the following canonical duplication: :::%{1{%::' -

...RYYR...YRRY.... Thus, the Thue-Morse zipper mechanism unites elegantlif the
dominating three-periodicity with variability of a sequence. The alternative approach
[28,29] consists of the consecutive growth of three-periodicity . ..RRY ... (or ...RYY ...)
with subsequent canonical replication—duplication.

6. Conclusion

The examples considered above show that the spectral representation is a versatile and
powerful tool for the identification of random constituents in symbolic sequences. The
additional advantage of the symbolic Fourier transformation is related to the numerous fast
computational algorithms known in the literature [18,33]. The technique of analysis of
Fourier spectra is also well developed.

The spectral representation permits identification of finite-memory effects as well.
The qualitative picture may be described by using the standard Ornstein-Uhlenbeck
approximation [15] with exponential decay both for the pair correlation functions
(equation (2.8) with mo < M/2) and p-periodic oscillations,

AKog(mo) = Kaa(mo) — Kaw ~ exp(—mao/re) (6.1a)

B Ko (mo) ~ cos(Zrmo/ p) exp(—mo/re) (6.15)

and by the reciprocating Wiener—Khinchin relationship (2.10). An elementary consideration
shows that in the case (6.1a) the small wavenumber range of the spectrum with g, < 1/r;

will be enriched by the higher harmonics {if AX > () or have a deepening (if AKX < 0),
while in the case (6.15) the fAinite-memory effects will produce the typical Lorentzian-like
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smearing of Bragg peaks with widths Ag ~ 1/r.. In this sense the randomnly destroyed
three-periodicity in DNA sequences (or two-periodicity in the Rudin-Shapiro substitution)
can easily be differentiated from the finite Markovian memory with r, = 3 or from the
damping three-periodicity with finite decay. The extension of statistical criteria to the
random sequences with memory needs, however, separate investigation.
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